气候变化对未来长江上游径流的影响

气候变化对未来长江上游径流的影响

气候变化对未来长江上游径流的影响

  • 适用:本科,大专,自考
  • 更新时间2024年
  • 原价: ¥308
  • 活动价: ¥200 (活动截止日期:2024-04-29)
  • (到期后自动恢复原价)
气候变化对未来长江上游径流的影响

气候变化对未来长江上游径流的影响研究
摘要

全球气候变暖引起水循环加快,影响大气环流,从而改变降水的时空分布及强度,蒸发、入渗、径流等水文过程随之发生变化。气候变暖还会导致干旱、洪水等极端水文事件的频次和强度增加,进而影响局部地区的社会经济发展。长江是我国最大的江河,在我国国土开发、生产力布局和社会经济方面,均具有极为重要的战略地位。因此,研究气候变化对长江上游流域径流的影响,对于制订应对气候变化影响的区域适应性措施具有重要意义。
论文利用长期监测水文气象资料,DEM、土壤、植被等数据,依托VIC模型构建了气候变化对径流影响评估模型,将气候模式输出单向嵌套模型,模拟了未来30年(2021-2050年)RCP4.5情景下长江上游日径流过程,评估了气候变化对径流时空变化及其空间分布格局的影响。主要研究成果与结论如下:
(1)VIC模型在9个典型流域径流模拟表明,模型相对误差在-16.2%~21.7%之间;日流量过程效率系数平均值为0.75;月流量过程效率系数平均值为0.87。总的来说,基于VIC模型构建的气候变化对径流影响评估模型在长江上游流域是适用的的。
(2)与基准期(1971-2000年)相比,未来30年RCP4.5情景下流域多年平均气温呈显著增加趋势,升温幅度约为1°C~2°C之间。多年平均降水增加1.2%,在II区南部,IV区和VI区降水呈现减少趋势,其他区域都呈现出增加趋势。与气温预估结果相比,不同气候模式预估降水变化一致性较差,存在较大的不确定性。
(3)径流未来30年里总体呈减少趋势,多年平均径流较基准期减少2.8%,除西部和西南部等局部区域有小幅增加,其他大部分区域都呈现出减少趋势,但减幅较小,在2%~8%之间。在RCP4.5情景下尽管多数模式预估径流呈减少趋势但在NORESM1-M模式下,预估结果与之相反。因此,对于评估结果应注意其还存在一定不确定性。

关键词:气候变化、RCP4.5情景、VIC模型、趋势检验、长江上游流域

 

Assessing the impacts of future climate change on runoff in the upper reaches of the Yangtze River
Abstract

The global warming causes the water cycle to accelerate, the influence of the atmospheric circulation, thus changing the spatial and temporal distribution and intensity of precipitation, evaporation, infiltration, runoff and other hydrological processes will be changed. Climate warming will also lead to droughts, floods and other extreme weather frequency and intensity increases, and thus affect the social and economic development of local areas. The Yangtze River is the largest river in China, which has a very important strategic position in the development of China, the distribution of productive forces and the social and economic aspects. Therefore, it is significant to study the impact of climate change on the runoff in the upper reaches of the Yangtze River, which has important significance for the development of regional adaptation measures to deal with the impact of climate change.
The long-term monitoring of hydrological and meteorological data, DEM, soil, vegetation, etc. data, relying on the VIC model to construct the climate change impacts on runoff assessment model, will climate model outputs a one-way nested model to simulate the next 30 years RCPs scenarios in the upper reaches of the Yangtze River daily runoff process, in order to assess the effects of climate change on runoff of spatio temporal changes and spatial distribution. The main research results and conclusions are as follows:
(1)The runoff simulation of VIC model in 9 typical watersheds shows that the relative error of the model is between -16.2% ~ 21.7%; the average daily flow process efficiency coefficient is 0.75; the average monthly flow process efficiency coefficient is 0.87. In general, it is feasible to evaluate the impact of climate change on runoff based on the VIC model.
(2)Compared with the baseline period (1971-2000 years), the average temperature in the basin over the next 30 years RCP4.5 was significantly increased, and the heating range was about 1 °C ~ 2 °C. Average annual precipitation increased by 1.2%, in the Southern District of II, IV and VI region precipitation showed decreasing trend, other regions presents increasing trend. Compared with the predicted results, the different climate models predict the consistency of precipitation change is poor, there is a big uncertainty.
(3)Runoff in the next 30 years showed an overall decreasing trend, multi-year average runoff as compared with the baseline period decrease of 2.8%, in addition to Western and southwestern region has increased slightly, most of the other regions presents decreasing trend, but the decrease amplitude is smaller, between the 2% ~ 8%. In the RCP4.5 scenario, though most of the model estimates show a decreasing trend in runoff, the prediction results are in contrast to the NORESM1-M model. Therefore, it should be noted that there are some uncertainties in the assessment results.

Keywords: Climate change, RCP4.5 scenario, VIC model, Trend test, The upper reaches of the Yangtze River Basin
目  录

摘要 I
Abstract II
第1章 绪论 1
1.1 研究背景及意义 1
1.2 国内外研究进展 2
1.2.1 国内外关于气候变化对水文水资源影响的研究历程 2
1.2.2 气候变化与水文响应研究进展 5
1.3 主要内容与技术路线 6
1.3.1 主要研究内容 6
1.3.2 技术路线 6
第2章 资料与方法 8
2.1 研究区概况 8
2.2 资料数据 9
2.2.1 实测气象资料 9
2.2.2 排放情景 10
2.2.3 气候模式模拟数据 11
2.2.4 模式数据偏差订正 11
2.3 主要研究方法 12
2.3.1 影响评估模型的构建 12
2.3.2 Man-Kendall趋势检验法 15
第3章 长江上游气候变化预估 17
3.1 气温变化 17
3.1.1 空间变化 17
3.1.2 时间变化 21
3.2 降水变化 26
3.2.1 空间变化 26
3.2.2 时间变化 30
第4章 长江上游径流对气候变化的响应 34
4.1 影响评估模型的适用性 34
4.2 空间变化 37
4.3 时间变化 41
第5章 结论与展望 45
5.1 主要结论 45
5.2 展望 46
参考文献 47
致  谢 51
附录 52
外文原文 52
外文译文 70
毕业论文任务书 80
华北水利水电大学本科生毕业论文开题报告 81

参考文献

[1]IPCC. Climate change 2001: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2001: 1-1032.
[2]IPCC. Climate change 2007: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2007: 1-976.
[3]IPCC. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R].                   Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, 1535pp.
[4]秦大河, stocker T, 259名作者和TSU( 驻伯尔尼和北京). IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1): 1-6.
[5]刘昌明, 刘小莽, 郑红星. 气候变化对水文水资源影响问题的探讨[J]. 科学对社会的影响, 2008( 2): 21-27.
[6]江涛, 陈永勤, 陈俊合. 未来气候变化对我国水文水资源影响的研究[J]. 中山大学学报(自然科学版), 2000, 39( Z2): 151-157.
[7]夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考[J]. 地球科学进展, 2011, 26( 9): 905-915.
[8]Allen M R, Ingram W J. Constrains on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419:224-232.
[9]Gedney N, Cox P M, Betts R A,  et al. Detection of a direct carbon dioxide effect in Continental river runoff records[J]. Nature, 2006, 439(7078): 835 -838.
[10]李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457-464.
[11]IPCC. Climate change 2007: The physical science basis[M]..  Cambridge University Press, 2007.
[12]Barnett T P, Pierce D W, Hidalgo H G, et al .. Human-induced changes in the hydrology of the western United States[J]. Science, 2008, 319: 1080-1083
[13]刘春蓁. 气候变异与气候变化对水循环影响研究综述[J]. 水文, 2003, 23(4): 1-7
[14]张利平, 陈小凤, 赵志鹏等. 气候变化对水文水资源影响的研究进展[J]. 地理科学进展, 2008, 27(3): 60-67.
[15]Mehran A, Aghakouchak A, Phillips T J. Evaluation of CMIP5 continental precipitation simulations relative to satellite‐based gauge‐adjusted observations[J]. Journal of Geophysical Research: Atmospheres. 2014, 119(4): 1695-1707.
[16]Phillips T J, Gleckler P J. Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics[J]. Water Resources Research. 2006, 42(3): W03202.
[17]江志红, 陈威霖, 宋洁等. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J]. 大气科学. 2009, 33(01): 109-120.
[18]刘敏, 江志红. 13个IPCC AR4模式对中国区域近40a气候模拟能力的评估[J]. 南京气象学院学报. 2009, 33(02): 256-268.
[19]姚遥, 罗勇, 黄建斌. 8个CMIP5模式对中国极端气温的模拟和预估[J]. 气候变化研究进展. 2012, 8(04): 250-256.
[20]许吟隆, 薛峰, 林一骅. 不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析[J]. 气候与环境研究. 2003, 8(02): 209-217.
[21]吴志勇, 郭红丽, 金君良等. 气候变化情景下黑河流域极端水文事件的响应[J]. 水电能源科学. 2010, 28(2): 7-9, 46.
[22]Wang G Q, Zhang J Y, Jin J L, et al. Assessing water resources in China using PRECIS projections and a VIC model[J]. Hydrology and Earth System Sciences. 2012, 16(1): 231-240.
[23]刘浏, 徐宗学, 黄俊雄. 气候变化对太湖流域径流的影响[J]. 北京师范大学学报(自然科学版). 2010, 46(03): 371-377.
[24]Doblas-Reyes F J, Pavan V, Stephenson D B. The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation[J]. Climate Dynamics. 2003, 21(5-6): 501-514.
[25]Thomson M C, Doblas-Reyes F J, Mason S J, et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles[J]. Nature. 2006, 439(7076): 576-579.
[26]Dankers R, Feyen L, Christensen O B. On the benefit of high-resolution climate simulations in impact studies of hydrological extremes[J]. Hydrology and Earth System Sciences. 2009, 6(2): 2573-2597.
[27]南京水利科学研究院, 河海大学. 气候变化对我国水安全影响及对策研究——课题五“气候变化影响评价模型及我国水资源系统的敏感性”[R]. 2010.
[28]刘绿柳, 姜彤, 徐金阁等. 西江流域水文过程的多气候模式多情景研究[J]. 水利学报. 2012, 43(12): 1413-1421.
[29]Beyene T, Lettenmaier D P, Kabat P. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios[J]. Climatic Change. 2010, 100(3-4): 433-461.
[30]余钟波. 流域分布式水文学原理及应用[M]. 北京: 科学出版社, 2008.
[31]Lu G H, Xiao H, Wu Z Y, et al. Assessing the impacts of future climate change on hydrology in Huang-Huai-Hai Region in China using the PRECIS and VIC models[J]. Journal of Hydrologic Engineering. 2013, 18(9): 1077-1087.
[32]Yasin H Q, Clemente R S. Application of SWAT model for hydrologic and water quality modeling in Thachin River basin, Thailand[J]. Arabian Journal for Science and Engineering. 2014, 39(3): 1671-1684.
[33]Park M J, Ha R, Kim N W, et al. Assessment of future climate and vegetation canopy change impacts on hydrological behavior of Chungju dam watershed using SWAT model[J]. Journal of Civil Engineering. 2014, 18(4): 1185-1196.
[34]Sahoo G B, Ray C, De Carlo E H. Calibration and validation of a physically distributed hydrological model-MIKE SHE to predict streamflow at high frequency in a flashy mountainous Hawaii stream[J]. Journal of Hydrology. 2006, 327(1-2): 94-109.
[35]Thompson J R. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections[J]. Hydrology Research. 2012, 43(4): 507.
[36]丁相毅, 贾仰文, 王浩等. 气候变化对海河流域水资源的影响及其对策[J]. 自然资源学报. 2010, 25(04): 604-613.
[37]徐若兰, 陈华, 郭靖. 气候变化对汉江流域上游水文极值事件的影响[J]. 北京师范大学学报(自然科学版). 2010, 46(03): 383-386.
[38]叶爱中, 夏军, 王纲胜. 黄河流域时变增益分布式水文模型(II)——模型的校检与应用[J]. 武汉大学学报(工学版). 2006, 39(04): 29-32.
[39]夏军, 叶爱中, 王纲胜. 黄河流域时变增益分布式水文模型(I)——模型的原理与结构[J]. 武汉大学学报(工学版). 2005, 38(06): 10-15.
[40]王国庆, 张建云, 荆新爱等. AWBM模型及其在半干旱流域的应用研究[J]. 水文. 2005, 25(05): 9-12.
[41]张建云, 王国庆. 气候变化对水文水资源影响研究[M]. 北京: 科学出版社, 2007.
[42]Hansen M C, Defries R S, Townshend J, et al. Global land cover classification at 1km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing. 2000, 21(6-7): 1331-1364.
[43]Reynolds C A, Jackson T J, Rawls W J. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions[J]. Water Resources Research. 2000, 36(12): 3653.
[44]Rosenbrock H H. An automatic method for finding the greatest or least value of a function[J]. The Computer Journal. 1960, 3(3): 175-184.
[45]Wu Z Y, Lu G H, Wen L, et al. Thirty-Five Year (1971-2005) simulation of daily soil moisture using the variable infiltration capacity model over China[J]. Atmosphere-Ocean. 2007, 45(1): 37-45.
[46]Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I -- A discussion of principles[J]. Journal of Hydrology. 1970, 10(3): 282-290.
[47]王乐, 刘德地, 李天元等. 基于多变量M-K检验的北江流域降水趋势分析[J].水文.2015, 35(4): 86-90.

 

 

 

 

http://www.bysj360.com/  http://www.bysj360.com/html/5215.html   http://www.bylw520.net


 

  • 关键词 气候变化 未来 长江 上游 流的 影响
  • 上一篇:(写作药学论文)岳阳市第一人民医院儿童用药的药学服务方案设计
  • 下一篇:(药学论文)医院安全用药宣传方案
  • 暂无购买记录

    暂时没有评论

    真实

    多重认证,精挑细选的优质资源 优质老师。

    安全

    诚实交易,诚信为本。

    保密

    所有交易信息,都为您保密。

    专业

    10年专业经验,10年来帮助无数学子。